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This paper studies Manin—Radul supersymmetric Kadomtsev—Petviashvili hierar-
chy (MR-SKP) in three related aspect§) We find an infinite set of additional
(“ghost”) symmetry flows spanning the sanf@nticommutation algebra as the
ordinary MR-SKP flows(ii) The latter are used to construct consistent reductions
SKP, /2 mi2 Of the initial unconstrained MR-SKP hierarchy which involves a non-
trivial modification for the fermionic flows(iii) For the simplest constrained MR-
SKP hierarchy SKP 1 we show that the orbit of Darboux—Biund transforma-
tions lies on a supersymmetric Toda lattice being a square root of the standard
one-dimensional Toda lattice, and also we find explicit Wronskian-ratio solutions
for the super-tau function. €1999 American Institute of Physics.
[S0022-24889)00906-9

I. INTRODUCTION

Supersymmetric integrable hierarchies of nonlinear evolutiGuper-soliton”) equations
were originally proposedfrom purely mathematical motivations, but soon they attracted active
interest also in theoretical physics mainly due to their close connections with superstring theory
(for related studies of supersymmetric integrable systems of Korteveg—de Vries or nonlinear-
Schralinger type, see Ref.)3

The scope of the present paper is the supersymmetric Manin—Radul Kadomtsev—Petviashvili
(MR-SKP) hierarchy of integrable supersoliton nonlinear equations within the super-pseudo-
differential operator formulatiotisee also Ref. 4; for other formulations see Ref.\We study
extensions of the MR-SKP hierarchy incorporating additidiaaticommuting “ghost” symme-
tries, as well as reductions of MR-SKP. We use supersymmetric generalization of several basic
concepts in the theory of integrable systems which up to now have been most actively pursued in
the context of the ordinarybosoni¢ KP hierarchy: Baker—Akhiezer wave functions and
tau-functions’ eigenfunctions, and squared eigenfunction poteniisée Refs. 8 and 9, and
references therejin

The advantage of constructing an infinite sefafitjcommuting “ghost” symmetries in the
supersymmetric contexsee Sec. IV beloyis twofold. On the one hand, it allows us to double the
original supersymmetric hierarchy according to the “duality” concept, recently introduced in the
context of the ordinary KP hierarcH{.On the other hand, using the “ghost” symmetries we are
able to define systematic reductions of the original MR-SKP model to a broad class of constrained
supersymmetric KP hierarchies denoted as $Kp [see Eq.(5.2) below]. These hierarchies
posses correct evolution under both even and odd isospectral flows. The latter turns out to be a
nontrivial problem since reductions to SKR,» hierarchies aréncompatiblewith the original
MR-SKP fermionic flows. We provide a solution to this problem by appropriately modifying
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MR-SKP fermionic flows while preserving their origin@nt)commutation algebra, i.e., preserv-
ing the integrability of the constrained SKf,, systems.

The second part of the paper contains a detailed discussion of the simplest constrained MR-
SKP hierarchy—SKB, 1> [Eq. (5.3 below], for which we construct Darboux—BRlund (DB)
transformations preserving both typésven and oddof the isospectral flows. This again is
achieved thanks to the above-mentioned modification of the original MR-SKP fermionic flows.
Further, we study the pertinent DB orbit and discover a new supersymmetric(Fddaa lattice
structure on it. As a consequence of this result we are able to find explicit Wronskian-ratio
representation for corresponding super tau function.

Let us mention that several interesting reduced models of the supersymmetric KP hierarchy
have been previously constructed in the literature in terms of super-pseudo-differential
operators!~1* In particular, the supersymmetric version of AKNS hierarchy was found which
allows a description in terms of a bosohias well as fermioni® super-Lax operators. The
various properties and superspace formulation of these models were worked out, however, their
evolution equations involve only even time flows defining them effectively as reductions of the
SKP, hierarchy!! where only even time flows are present by construction.

II. BACKGROUND ON MANIN-RADUL SUPER-KP HIERARCHY

We shall use throughout the super-pseudo-differential caltwliih the following notations:
dandD=d/d0+ 64 denote operators, whereas the symlaglandD,, will indicate application of
the corresponding operators on superfield functions. As uskat) (denote superspace coordi-
nates. For any super-pseudo-differential operater X aj,ZDj the subscripts(=) denote its
purely differential part @,=ZX;-0a;,D') or its purely pseudodifferential part AC
=Zj-1a_jD"'), respectively. For anyl the super-residuum is defined as Resa_,,,. The
rules of conjugation within the super-pseudo-differential formalism are as folfdwst3)*
=(—1)AIBIB* 4* for any two elements with grading#\| and |B|; (9%)* =(—1)k3*, (DX)*
=(— 1)K+ D2pk andu* =u for any coefficient superfield.

Finally, in order to avoid confusion we shall also employ the following notations: for any
super¢pseudopdifferential operatord and a superfield functiof) the symbolA(f ) will indicate
application(action of A onf, whereas the symbodf will denote just operator product of with
the zero-ordefmultiplication) operatorf.

MR-SKP hierarchy is defined through tifiermionicLax operator(:

L=D+fo+ >, bjg D+, f;07) (2.2)
i=1 =1

expressed in terms of lzosonic“dressing” operator\V:

L=WDWt, W=1+2 a;d D+, B}, (2.2
=1 =1
whereb; , ; are bosonic superfield functions wherdasa; are fermionic ones and where
f0=2a1, b1=—D0al, f1=2a2—a'l'Dgal—ZaLBl—'Dg,Bl. (23)
Remark:The square of MR-SKP Lax operat(®.1) is an even operator of the form
L2=0+Dyb10 "D+ (2by+ b2+ Dyf 1+ by Dyfg)d 1+ (2.4

Note that the zero-order term ¥ vanishesD,f,+2b,;=0 due to(2.3).
The Lax evolution equations for MR-SKP réad
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J 21 21
Iz:=—[,c,,z]=[z L], (2.9
|
D, L=—{L2"" Y cy={£> "t cy—2,%, (2.6
J | —1 2n—1yA—1
EV\/:—(W&W YW, DW=—(WD"""W H_W, 2.7
|
with the short-hand notations
D—& ge i {Dy,D}=-2 (2.9
"0, &L Myt S T '
(1,0)=(t;1=%X,t5,...;6,04,6,,...). (2.9

Accordingly, the super-Zakharov—Shal§atiper-Z$ equations take the following form:
J 2 J 2k 2k 2l J 21-1 2k 2k 21-1
Ek£+_a_t|£+_[£+ L5]=0, Ek£+ —D\L7-[L57, L7 7]=0, (2.10

D L2714+ D o2kt pA o2kt "=, (2.12)

Remark:Let us stress that, unlike the possibility to identify=x [since the zero-order term in
£? (2.4) vanishe$ we cannotidentify §;= 6. Therefore, there is a nontrivial “evolution” already
with respect to the lowest fermionic floly; (which cannot in general be identified wifb).

The super-Baker—Akhiezésuper-BA and the adjoint super-BA wave functions are defined
as

Pea(L, OGN, D) =GR, 0N, 7)), AL O, ) =W YOt 00, 7) (212

(with 7 being a fermionic “spectral” parametgerin terms of the “free” super-BA functions

YEA(t BN, ) =8ORyl G\, )= LT, (213
§(t,0;)\,77)=|21 M+ 779+(77—>\9)n§1 A" 1o, (2.14

for which it holds

d
k — —
ot VeA=AER, Davga=D5" WA= Dot (2.15

Accordingly, (adjoiny super-BA wave functions satisfy

d
(L2 g = NP s v == (LD (W), Dot == (L) ().
(2.19

Correspondingly, the defining equations for arbitréagjoint) super-eigenfunctionsEFg are

i‘1>=£2+'(<I>), D& =L (P), %‘I’Z—(ﬁz')i(‘?), D ¥ =—(L""H5(P)
|

at,
(2.1
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with supersymmetric “spectral” representatio(es. Ref. 9

(2.18

For later use let us write down the explicit expression for the “free” sBf®) of the “free”
£©=D. Namely, taking into accour(2.13—(2.15 and(2.18 we get(for definiteness, consider
bosonic®(®)

Jd
qu><°>=a';cb<°>, D, ® ="t (2.19

<I>(°)(t,0)=f d\ d7 @\, 7)€t oM7)

=f dx[(l—e; x”an>¢8(x)+

e+n§1 A“‘len) er(\)

exp(E )\'t,),
3
(2.20

where oO(\, 7)= @r(N\) + neg(\) is arbitrary “spectral” density.
The super-tau-function(t, 9) is related with the super-residues of powers of the super-Lax
operator(2.1) as follows:

J
Res,CZk:ID(, In7, Res£?* 1=D,D,Inr. (2.20)
k

Equation(2.21) follows from the identities

0 d 0
2k _ 2l 2k—1_ 21
o Resl ot Res,, o Res( D, ResL”,

(2.22
D, Res£? 1+ D, Rest? " 1+2 Res?kt!1=1 =0,

which in turn are easily derived from Eg2.5) to (2.6). In particular, for the coefficients of and
W we have

J
bi=—Inr=d,In7, «;=D;In7. (2.23
at,

In what follows we shall encounter objects of the fofp (& W) =D,o, (P W) whered, ¥
is a pair of SEF and adjoint-sEF. Similarly to the purely bosonic asee can show that
application of the inverse derivative on such products is well-defingd to an overall
(t,0)-independent constapntNamely, there exists a unique superfield function—supersymmetric
“squared eigenfunction potential(super-SEPS(®,¥) such thatD,S(P,V)=dW¥. More pre-
cisely the super-SEP satisfies the relations

J —1ap 2k -1 Ly p2n—1gp -1
a—tkS(CD,\If)ZReS{D VLADD™ ), DyS(P,¥)=ResD ¥ L dD™Y)  (2.29

whose consistency follows from the super-ZS E@s10 and(2.11). In particular, Eq(2.24) for
k=1 andn=1 read
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0,S(®,¥)=ResD W L2DD 1)=Dy(d¥), D,;S(P,¥)=ResD 'WLDOD H)=DV.
(2.25

IIl. ISSUE OF DARBOUX—BA CKLUND TRANSFORMATIONS IN MR-SKP HIERARCHY

Consider the “gauge” transformation @ (2.1 of the form
L=TCT ', T=xDx % (3.1

which parallels the familiar DB transformation in the purely bosonic ¢a$2Requiring the

transformed Lax operatcf to obey MR-SKP evolution equation of the same fd@rb)—(2.6) as
L implies that7 must satisfy

d ~
a—tITT*1+ (727 Y_=0, D, TT *— (72" 7 Y _=-2(£> 1 _. (3.2

The first Eq.(3.2) is exactly analogous to the purely bosonic case and impliesythaist be
a seF(2.17 of £ with respect to the even MR-SKP flows. However, there is a problem with the
second Eq(3.2). Namely, for the generalunconstrainedMR-SKP hierarchy it does not have
solutions fory. In particular, if y would be a sEF also with respect to fermionic floje$. the
second Eq(2.17)], then the left-hand side of second E8§.2) would become zero whereupon we
would get the contradictory relationZ¢" 1) _=0.

Thus, we conclude that the DB transformations of the general MR-SKP hierarchy preserve
only the bosonic flow equations. In what follows we shall look for consistent solutio(@ 2fin
the framework ofconstrainedMR-SKP systems which will be achieved thanks to a nontrivial
modification of the fermionic MR-SKP flows preserving their anticommutation algeh&h

There is a further essential distinction of DB transformations for MR-SKP hierarchy and its
purely bosonic counterpart. Calculating the super-residues of the powers of the DB-transformed
Lax operator we obtain

ResLS=Dy(x L5 (x))+(—1)S"* ResL®. (3.3

Note the crucial sign factor in front of the second term on the right-hand side of3E3).
Together with the first Eq(2.21) it implies for the DB-transformed superfunction

F=xTt (3.9

in contrast with the bosonic cag@here we havé&= y7).

IV. SUPER-“GHOST” SYMMETRIES OF MR-SKP HIERARCHY

Consider an infinite sef®;,,, ¥/}, of pairs of (adjoint)sEFs of £ where those with
integer indices are bosonic, whereas those with half-integer indices are fermionic. Next, let us
introduce the following infinite set of super-pseudo-differential operators:

s—1
MS’ZZKZO D 11D Wy, s=1.2,., 4.7

which generate an infinite set of flowsg (9, 1,=D.d=0a/dt}):

_ _ J
IgoV= MgV, D L={ M 1), L}, ?‘C:[Mkvc]- (4.2
dty
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On (adjoint)sEFs entering\,, we allow anonhomogeneousction of the superflow&t.2)
which parallels the construction of generalized “ghost” symmetry flows in the bosonid¢%ase
(nonhomogeneous terms are absent in the traditional approach to “ghost” symmetry/flows

DgsP o= My D)) = Do, I Pip=— MEA W)+ (=)W, 5, 4.3
DgF* =+ MG(F™), (4.4

whereF (") is a generidadjoint)sEF not belonging to the s, ¥}

Using (4.3 we arrive at the following:

Proposition 1: The infinite set of superflows, (4.1) (antijcommute both with the ordinary
superflows of MR-SKP (2.5]2.6) as well as among themselves:

A U P 58—{5D}—0 (4.5
gt o) late | L Tay o '
J J J — _
—_—, = :1Dn :01 {D|1D]}:_2 — (4'6)
atg dty] | ats Itivj-1
meaning thatMg, obey the following equations:
0 _ _
mMslzz[ﬁik'Ms/z]f. DoM=[L M-, DaMi1p={L3 M-,
4.7
J J J _
— M= =M~ [M ,M]=0, —M_1—= DM —=[ M, M,_15]=0, (4.8
Ity at, oty
BKMI—1/2+SIMk—llz_{Mk—UZer—l/j:_2Mk+l—l- (4.9

In checking Eqgs(4.7)—(4.9) we make use of several useful identities for super-pseudo-differential
operators:

[By, @D W 5] = Bp(Pgp) D™ W o= D ,D 1B (W 0), (4.10
[Bi , @D~ W] ) = Bi( D) D™ W o+ (— 1)5D D~ 1B (Wp0), (4.11

(@D~ MW 0) (DD W 1) = X (@) D™ W ot (= DHFVD DT IAE | (W),
(4.12
(DD W )% =(— 1)+ +I‘I’llzp_lq)j/z, Xisy(P)=P oDy H(Vyp®),  (4.13

where B, ,B; indicate arbitrary bosonic/fermionic purely differential super-operators, and
[-,-1¢) denotes commutator or anticommutator whenever the second element is bosonic/
fermionic.

V. CONSTRAINED MR-SKP HIERARCHIES

The super-“ghost”-symmetry flows and the corresponding generating operatgys(4.1)
and (4.2) can be used to construct reductions of the fulhconstrained MR-SKP hierarchy.
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Namely, since according to Proposition 1 the super-“ghost” flows obey the same aldejras
the original MR-SKP flows, we can identify an infinite subset of the latter with a corresponding
infinite subset of the former:

— , J — J _ _
dsip=—0smp, /=12,.., &=—, H-1=Dx, =—, d-1=Dr, (5.
atk ﬂtk

where(r,m) are some fixed positive integers of equal parity, and retain only these flows as Lax
evolution flows(this is a supersymmetric extension of the usual reduction procedure in the purely
bosonic cas®). Equation(5.1) implies the identification £'*) _ =M, for any / and, there-

fore, the corresponding reduced MR-SKP hierarchy denoted as SiPis described by the
following constrained super-Lax operator:

m—1

Lpmz=L+ ;0 Pe1- 2D W (5.2

The two simplest constrained MR-SKP Lax operators read
£(1/2’1/35£:D+f0+ (DoDiquo, (53)
L=+ ®D ¥yt &1 ,D M, (5.9

where®,, ¥, and®,,,, V4, are pairs of bosonic and fermionfadjoint)sEFs with respect to
the bosonic flowgabout the fermionic flows, see belaw

In what follows we shall consider in some detail the simplest constrained,sSdhierarchy
(5.3, and henceforth we shall skip the subsciiht3) of (5.3 for brevity.

Using identities(4.10—(4.12 we find the identity for any integer pow&t (for an analogous
formula in the purely bosonic case, see Ref): 19

N—-1

(LNy_ = LN D) DL (W), (5.5

]=0
In particular, for the square d6.3 we get
L2=0+L(DPy)D W+ DD 1L* (W), (5.6)

where again the zero-order terBf,+2®,¥ ;=0 as a particular case ¢2.3).

The constrained MR-SKP Lax operai@.3) satisfies consistently the bosonic flow EB.5).
However, we need to make a nontrivial modification of the original fermionic fi@ in order
to keep them compatible with the reduction from the general to the constrained MR-SKP hierar-
chy. Indeed, taking thé—) part of Eq.(2.6) for the constrained (5.3) and using identity(4.11)
together with(5.5) we obtain

(Dp@o— L3 N D) D MWy~ DD YD Wo+ (L2 (V)
2n—1

=—2(L2)_ =-2 20 L2 (@o) DL (W), (5.7)
p

which leads to apparent contradiction.

In Ref. 8 we solved the problem of incompatibility of the standard Orlov—Schulman addi-
tional nonisospectral symmetry flotfswith the reductions of the full bosonic KP hierarchy by
appropriately modifying the original Orlov—Schulman flows. Motivated by this {rak arrive at
the following important proposition:
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Proposition 2: There exists the following consistent modification of MR-SKP flgw&.D)
for constrainedSKP,, 1, hierarchy:

DpL=—{L2" 1= XD £y={£2" 1, L +{Xn"Y, L} - 2.7, (5.8
n—-2

X(anl)Ezlzo £2(n7|)73(q)0)fD71(£2l+1)*(\1,0), (59)

D ®o=L2""H D) —2L2 YD) + XD (Dy), (5.10

D Wo=— (L2 N (W) +2(L2" 1> (W) — (X )* (W), (5.1

The modified [} flows obey the same anticommutation algebra (2.8) as in the original uncon-
strained case.
In checking the correct anticommutation algebralgy (5.8) one has to verify the identities

Dkx(Zl *l)_i_ D|x(2k*l)_{x(2k*l),x(2| *1)}_{X(2k*l),£2|*1}7 _{X(Zl *l)]ﬁZk*l}i — 0,
(5.12

which in turn follow from the definition oiX(?"~1) (5.9) together with identitie$4.10—(4.13.
Remark:lt is straightforward to generalize Proposition 2 for arbitrary constrained, Sl5p
hierarchy(5.2). Namely, the modified fermionic flows have the same form a%i8 where in the
expression forX(?"~1) [cf. (5.9)] one has to sum over all pairs ¢ddjoint) SEFs entering the
purely pseudodifferential part &, /> ) in (5.2).
Let us now consider DB transformations 6r= L4/, 1/2) (5.3 preserving its constrained form:

L=TLT *=D+To+ DD W, T=0,Dd,*, (5.13
To=—10—2DyIn®y, Do=TL(Po)=DodxIn Do+ DD,fo+ PPy, To=D,? .
(5.14
We have the following useful identities for DB-transformed quantities:
L(Do)=TL> H( Do),
(L5 H)* (W) =(— )5 1T 1L (W) = (—1)%P; "Dy (PoL™ (Wg). (5.1

There is a further crucial property of the modifiBg, flows (5.8 —(5.9):
Proposition 3: The conditions for preserving the fermionic flow Eqgs. {§89) by the
Darboux-Backlund transformations o= L, 1/, (5.3) [cf. second Eq. (3.2)]:

D, 77 1= (72" 1T Y _=—2(£% Y _+ XD x@en-b-1 (5.16

where 7=®,D®, ! and the “tilde” refers to DB-transformed objects, are now satisfigte
proof of (5.16 proceeds by using the modifidd,, flow definitions (5.9 —(5.11) together with
identities(4.10—(4.13 and (5.15.

VI. THE DARBOUX-BA CKLUND ORBIT OF THE CONSTRAINED MR-SKP HIERARCHY

The recursive expression for the chain of the DB-transformatibrik3 —(5.14) of the con-
strained SKR), 1/, hierarchy, starting from the “free” initialCo=D, reads(the subscripk indi-
cating the step of DB iteration

Lo 1= TLT =D fi 1+ @D Wy, =D, (6.9
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L1=TyDT o '=D—2DyIn Do+ (4 In Do) D 12, (6.2

where
frp1=—2DpIN®—fi, W=D ", (6.3
Dy 1= Dy In O+ O Dyf + D2V (6.9

and whereb, is a SEF of the initial “free” L,=D satisfying the “free” version of Eq(5.10 (no
X(1=1) term). Therefore, its explicit expression is given by H8.20 with substituting6,,—
—6,. Further we have

O,=0,D,, V,=0yt, f,=—2DyInd,. (6.5
Note, that from(6.3) to (6.4) we find
204 Wi 11 Dy 1 =20,V + Dyf=---=0, (6.6

which is consistent with the absence of a zero-order term in the squalgiof(6.1).
Equation(6.3) can easily be rewritten as follows:

k
fre1=—2D,2, (~1* 'In®;. 6.7)
1=0
Recalling identity(6.6) we can alternatively rewrite Ed6.4) as
Diy 1=~ 3D Dyf i 1= Didy IN Dy~ DEP (6.8

from which we obtain

k
Py =0 >, (1 o Ind;. (6.9
i=0

After making the standard substitutidn = e, we find from the second equation (6.8) a new
super-Toddas-Todg lattice equation:

Oy = @I P g1, (6.10
Note, that by acting 0186.10 with ¢, we get

92 = efk+2” Pk— gfk Pk-2, (6.1

which has the form of the ordinary one-dimensional Toda lattice equation but wdtbubled
lattice spacing and, of course, the Toda varialkdes ¢, (X,t,,...;0,64,...) are nowsuperfields.
Equation(6.10 can also be rewritten as

k
el %= D (—1) 1,0, (6.12
i=0

or

Prr1= ek tIn

k
20 (—1>k—iax<pi). (6.13
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We now discuss the Wronskian representation for the sEFsThes-Toda lattice(6.10 can
apparently be thought of as the square root of the standard Toda lattice. We can use this idea to
proceed without any technical calculations. According to the construction given in Ref. 21 the EFs
®,,, associated with even lattice points can be given the usual Wronskian expressions with the
starting “point” ®,. For the same reason, EBs,,,; associated with odd lattice points of the
s-Toda lattice will have the usual Wronskian expressions with the starting “poin= 9,9,
=0 (6.5

Generally, forn=0,1,... we find by the above arguments

Wi o[ @0, @6 ,... 0"] P W, [ @5, 0 ,... 00" Y] 6.1
Wb 0l g T T T wem e amy (¢
whereW,[ fq,....f ]=defla, fjl, i,j=1....k, denotes standard Wronskian determirffwtvever,

with superfield entries it#6.14)] and whereb{¥ = g5®, with @, as in(2.20 (with 6,— — 6,).
Using (3.4 and the above Wronskians expressiodd4 we find by iteration the super-tau
functions obtained by 2 recursive steps of the DB transformations:

_om_ Pon-1Pon-z Py Wi[Dg ... 6]
Pon-2Pon-a Py Wo[@g, 0, OF ]’

(6.195

D@y Py Woig[Po, @G ... PF]

7_(2n+1): —
Do 1Pop3 Py W[ DV ,...,@E)”)]

(6.16

Moreover, since fo5.3) d,In r=dgW,, for the k-step DB iteration we havé, In =d, /d,_,
by taking into account3.4). The latter equation together with the relatighi™)=®,/7® true for
any DB-stepk [cf. (3.4)] yields an alternative super-tau-function formsstoda lattice:

71t 0)

(9X|n T(k)(t,e): m

(6.17

with the short-hand notatio(2.9).

In a subsequent paper we plan to discuss several interesting issues connected with extending
the present result$a) construction of a “doubled” MR-SKP hierarchy by providing a super-Lax
formulation for the super-“ghost” symmetry flowef. (4.5—(4.6)]-a supersymmetric extension
of the double-KP construction of Ref. 1) general treatment of arbitrary constrained $KR»
hierarchies, including derivation of more general Wronskian-type solutions for the super-tau func-
tion and elucidating their Berezinian origit) obtaining consistent formulation of supersymmet-
ric two-dimensional Toda lattice as Darboux-eRlnd orbit on the “doubled” MR-SKP hierar-
chy (similar to the purely bosonic caeand of supersymmetric analogs of randamultimatrix
models; (d) study of possible connections of super-tau functions, on one hand, and partition
functions and joint distribution functions in random matrix models in condensed matter physics
(cf. Ref. 22, on the other hand.
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