
tive
eory

inear-

iashvili
udo-

l basic
ued in
d

d

he
the

re
rained

to be a

ing

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 6 JUNE 1999
Supersymmetric Kadomtsev–Petviashvili hierarchy:
‘‘Ghost’’ symmetry structure, reductions,
and Darboux–Ba¨cklund solutions

H. Aratyn
Department of Physics, University of Illinois at Chicago, 845 West Taylor Street,
Chicago, Illinois 60607-7059

E. Nissimov and S. Pacheva
Institute of Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chausee 72,
BG-1784 Sofia, Bulgaria and Department of Physics, Ben-Gurion University
of the Negev, Box 653, IL-84105 Beer Sheva, Israel

~Received 19 February 1998; accepted for publication 29 January 1999!

This paper studies Manin–Radul supersymmetric Kadomtsev–Petviashvili hierar-
chy ~MR-SKP! in three related aspects:~i! We find an infinite set of additional
~‘‘ghost’’ ! symmetry flows spanning the same~anti!commutation algebra as the
ordinary MR-SKP flows.~ii ! The latter are used to construct consistent reductions
SKPr /2,m/2 of the initial unconstrained MR-SKP hierarchy which involves a non-
trivial modification for the fermionic flows.~iii ! For the simplest constrained MR-
SKP hierarchy SKP1

2,
1
2

we show that the orbit of Darboux–Ba¨cklund transforma-
tions lies on a supersymmetric Toda lattice being a square root of the standard
one-dimensional Toda lattice, and also we find explicit Wronskian-ratio solutions
for the super-tau function. ©1999 American Institute of Physics.
@S0022-2488~99!00906-8#

I. INTRODUCTION

Supersymmetric integrable hierarchies of nonlinear evolution~‘‘super-soliton’’! equations
were originally proposed1 from purely mathematical motivations, but soon they attracted ac
interest also in theoretical physics mainly due to their close connections with superstring th2

~for related studies of supersymmetric integrable systems of Korteveg–de Vries or nonl
Schrödinger type, see Ref. 3!.

The scope of the present paper is the supersymmetric Manin–Radul Kadomtsev–Petv
~MR-SKP! hierarchy1 of integrable supersoliton nonlinear equations within the super-pse
differential operator formulation~see also Ref. 4; for other formulations see Ref. 5!. We study
extensions of the MR-SKP hierarchy incorporating additional~anti!commuting ‘‘ghost’’ symme-
tries, as well as reductions of MR-SKP. We use supersymmetric generalization of severa
concepts in the theory of integrable systems which up to now have been most actively purs
the context of the ordinary~bosonic! KP hierarchy: Baker–Akhiezer wave functions an
tau-functions,6,7 eigenfunctions, and squared eigenfunction potentials~see Refs. 8 and 9, an
references therein!.

The advantage of constructing an infinite set of~anti!commuting ‘‘ghost’’ symmetries in the
supersymmetric context~see Sec. IV below! is twofold. On the one hand, it allows us to double t
original supersymmetric hierarchy according to the ‘‘duality’’ concept, recently introduced in
context of the ordinary KP hierarchy.10 On the other hand, using the ‘‘ghost’’ symmetries we a
able to define systematic reductions of the original MR-SKP model to a broad class of const
supersymmetric KP hierarchies denoted as SKPr /2,m/2 @see Eq.~5.2! below#. These hierarchies
posses correct evolution under both even and odd isospectral flows. The latter turns out
nontrivial problem since reductions to SKPr /2,m/2 hierarchies areincompatiblewith the original
MR-SKP fermionic flows. We provide a solution to this problem by appropriately modify
29220022-2488/99/40(6)/2922/11/$15.00 © 1999 American Institute of Physics
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MR-SKP fermionic flows while preserving their original~anti!commutation algebra, i.e., preser
ing the integrability of the constrained SKPr /2,m/2 systems.

The second part of the paper contains a detailed discussion of the simplest constraine
SKP hierarchy—SKP1/2,1/2 @Eq. ~5.3! below#, for which we construct Darboux–Ba¨cklund ~DB!
transformations preserving both types~even and odd! of the isospectral flows. This again i
achieved thanks to the above-mentioned modification of the original MR-SKP fermionic fl
Further, we study the pertinent DB orbit and discover a new supersymmetric Toda~s-Toda! lattice
structure on it. As a consequence of this result we are able to find explicit Wronskian
representation for corresponding super tau function.

Let us mention that several interesting reduced models of the supersymmetric KP hie
have been previously constructed in the literature in terms of super-pseudo-differ
operators.11–14 In particular, the supersymmetric version of AKNS hierarchy was found wh
allows a description in terms of a bosonic13 as well as fermionic14 super-Lax operators. The
various properties and superspace formulation of these models were worked out, howeve
evolution equations involve only even time flows defining them effectively as reductions o
SKP2 hierarchy,11 where only even time flows are present by construction.

II. BACKGROUND ON MANIN–RADUL SUPER-KP HIERARCHY

We shall use throughout the super-pseudo-differential calculus1 with the following notations:
] andD5]/]u1u] denote operators, whereas the symbols]x andDu will indicate application of
the corresponding operators on superfield functions. As usual, (x,u) denote superspace coord
nates. For any super-pseudo-differential operatorA5( j aj /2Dj the subscripts~6! denote its
purely differential part (A15( j >0 aj /2Dj ) or its purely pseudodifferential part (A2

5( j >1 a2 j /2D2 j ), respectively. For anyA the super-residuum is defined as ResA5a21/2. The
rules of conjugation within the super-pseudo-differential formalism are as follows:13 (AB)*
5(21)uAuuBuB*A* for any two elements with gradingsuAu and uBu; (]k)* 5(21)k]k, (Dk)*
5(21)k(k11)/2Dk andu* 5u for any coefficient superfield.

Finally, in order to avoid confusion we shall also employ the following notations: for
super-~pseudo-!differential operatorA and a superfield functionf, the symbolA( f ) will indicate
application~action! of A on f, whereas the symbolAf will denote just operator product ofA with
the zero-order~multiplication! operatorf.

MR-SKP hierarchy is defined through thefermionicLax operatorL:

L5D1 f 01(
j 51

`

bj]
2 jD1(

j 51

`

f j]
2 j ~2.1!

expressed in terms of abosonic‘‘dressing’’ operatorW:

L5WDW21, W511(
j 51

`

a j]
2 jD1(

j 51

`

b j]
2 j , ~2.2!

wherebj ,b j are bosonic superfield functions whereasf j ,a j are fermionic ones and where

f 052a1 , b152Dua1 , f 152a22a1Dua122a1b12Dub1 . ~2.3!

Remark:The square of MR-SKP Lax operator~2.1! is an even operator of the form

L25]1Dub1]21D1~2b21b1
21Du f 11b1Du f 0!]211¯ . ~2.4!

Note that the zero-order term inL2 vanishesDu f 012b150 due to~2.3!.
The Lax evolution equations for MR-SKP read1
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]

]t l
L52@L2

2l ,L#5@L1
2l ,L#, ~2.5!

DnL52$L2
2n21,L%5$L1

2n21,L%22L2n, ~2.6!

]

]t l
W52~W] lW21!2W, DnW52~WD2n21W21!2W, ~2.7!

with the short-hand notations

Dn5
]

]un
2 (

k51

`

uk

]

]tn1k21
, $Dk ,Dl%522

]

]tk1 l 21
, ~2.8!

~ t,u![~ t1[x,t2 ,...;u,u1 ,u2 ,...!. ~2.9!

Accordingly, the super-Zakharov–Shabat~super-ZS! equations take the following form:

]

]tk
L1

2l2
]

]t l
L1

2k2@L1
2k ,L1

2l #50,
]

]tk
L1

2l 212DlL1
2k2@L1

2k ,L1
2l 21#50, ~2.10!

DkL1
2l 211DlL1

2k212$L1
2k21,L1

2l 21%12L1
2~k1 l 21!50. ~2.11!

Remark:Let us stress that, unlike the possibility to identifyt1[x @since the zero-order term in
L2 ~2.4! vanishes#, wecannotidentify u1[u. Therefore, there is a nontrivial ‘‘evolution’’ alread
with respect to the lowest fermionic flowD1 ~which cannot in general be identified withD!.

The super-Baker–Akhiezer~super-BA! and the adjoint super-BA wave functions are defin
as

cBA~ t,u;l,h!5W~cBA
~0!~ t,u;l,h!!, cBA* ~ t,u;l,h!5W* 21~cBA* ~0!~ t,u;l,h!! ~2.12!

~with h being a fermionic ‘‘spectral’’ parameter!, in terms of the ‘‘free’’ super-BA functions

cBA
~0!~ t,u;l,h![ej~ t,u;l,h!, cBA* ~0!~ t,u;l,h![e2j~ t,u;l,h!, ~2.13!

j~ t,u;l,h!5(
l 51

`

l l t l1hu1~h2lu! (
n51

`

ln21un ~2.14!

for which it holds

]

]tk
cBA

~0!5]x
kcBA

~0! , DncBA
~0!5Du

2n21cBA
~0!5]x

n21DucBA
~0! . ~2.15!

Accordingly, ~adjoint! super-BA wave functions satisfy

~L2!~* cBA
~* !56lcBA

~* ! ,
]

]t l
cBA

~* !56~L2l !1
~* !~cBA

~* !!, DncBA
~* !56~L2n21!1

~* !~cBA
~* !!.

~2.16!

Correspondingly, the defining equations for arbitrary~adjoint-! super-eigenfunctions~sEFs! are

]

]t l
F5L1

2l~F!, DnF5L1
2n21~F!,

]

]t l
C52~L2l !1* ~C!, DnC52~L2n21!1* ~C!

~2.17!
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with supersymmetric ‘‘spectral’’ representations~cf. Ref. 9!

F~ t,u!5E dl dh w~l,h!cBA~ t,u;l,h!, C~ t,u!5E dl dh w* ~l,h!cBA* ~ t,u;l,h!.

~2.18!

For later use let us write down the explicit expression for the ‘‘free’’ sEFF (0) of the ‘‘free’’
L(0)5D. Namely, taking into account~2.13!–~2.15! and~2.18! we get~for definiteness, conside
bosonicF (0)!

]

]tk
F~0!5]x

kF~0!, DnF~0!5Du
2n21F~0!, ~2.19!

F~0!~ t,u!5E dl dh w~0!~l,h!ej~ t,u;l,h!

5E dlF S 12u (
n>1

lnunDwB~l!1S u1 (
n>1

ln21unDwF~l!GexpS (
l>1

l l t l D ,

~2.20!

wherew (0)(l,h)5wF(l)1hwB(l) is arbitrary ‘‘spectral’’ density.
The super-tau-functiont(t,u) is related with the super-residues of powers of the super-

operator~2.1! as follows:

ResL2k5
]

]tk
Du ln t, ResL2k215DkDu ln t. ~2.21!

Equation~2.21! follows from the identities

]

]t l
ResL2k5

]

]tk
ResL2l ,

]

]t l
ResL2k215Dk ResL2l ,

~2.22!
Dl ResL2k211Dk ResL2l 2112 ResL2~k1 l 21!50,

which in turn are easily derived from Eqs.~2.5! to ~2.6!. In particular, for the coefficients ofL and
W we have

b15
]

]t1
ln t[]x ln t, a15D1 ln t. ~2.23!

In what follows we shall encounter objects of the formDu
21(FC)5Du]x

21(FC) whereF,C
is a pair of sEF and adjoint-sEF. Similarly to the purely bosonic case15 one can show tha
application of the inverse derivative on such products is well-defined@up to an overall
(t,u)-independent constant#. Namely, there exists a unique superfield function—supersymm
‘‘squared eigenfunction potential’’~super-SEP! S(F,C) such that:DuS(F,C)5FC. More pre-
cisely the super-SEP satisfies the relations

]

]tk
S~F,C!5Res~D21CL2kFD21!, DkS~F,C!5Res~D21CL2n21FD21! ~2.24!

whose consistency follows from the super-ZS Eqs.~2.10! and~2.11!. In particular, Eq.~2.24! for
k51 andn51 read
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]xS~F,C!5Res~D21CL2FD21!5Du~FC!, D1S~F,C!5Res~D21CLFD21!5FC.
~2.25!

III. ISSUE OF DARBOUX–BÄ CKLUND TRANSFORMATIONS IN MR-SKP HIERARCHY

Consider the ‘‘gauge’’ transformation ofL ~2.1! of the form

L̃5TLT21, T5xDx21, ~3.1!

which parallels the familiar DB transformation in the purely bosonic case.15,16 Requiring the
transformed Lax operatorL̃ to obey MR-SKP evolution equation of the same form~2.5!–~2.6! as
L implies thatT must satisfy

]

]t l
TT211~TL1

2lT21!250, DnTT212~TL1
2n21T21!2522~L̃2n21!2 . ~3.2!

The first Eq.~3.2! is exactly analogous to the purely bosonic case and implies thatx must be
a sEF~2.17! of L with respect to the even MR-SKP flows. However, there is a problem with
second Eq.~3.2!. Namely, for the general~unconstrained! MR-SKP hierarchy it does not hav
solutions forx. In particular, if x would be a sEF also with respect to fermionic flows@cf. the
second Eq.~2.17!#, then the left-hand side of second Eq.~3.2! would become zero whereupon w
would get the contradictory relation: (L̃2n21)250.

Thus, we conclude that the DB transformations of the general MR-SKP hierarchy pre
only the bosonic flow equations. In what follows we shall look for consistent solutions of~3.2! in
the framework ofconstrainedMR-SKP systems which will be achieved thanks to a nontriv
modification of the fermionic MR-SKP flows preserving their anticommutation algebra~2.8!.

There is a further essential distinction of DB transformations for MR-SKP hierarchy an
purely bosonic counterpart. Calculating the super-residues of the powers of the DB-transf
Lax operator we obtain

ResL̃s5Du~x21L1
s ~x!!1~21!s11 ResLs. ~3.3!

Note the crucial sign factor in front of the second term on the right-hand side of Eq.~3.3!.
Together with the first Eq.~2.21! it implies for the DB-transformed super-t function

t̃5xt21 ~3.4!

in contrast with the bosonic case~where we havet̃5xt!.

IV. SUPER-‘‘GHOST’’ SYMMETRIES OF MR-SKP HIERARCHY

Consider an infinite set$F j /2 ,C j /2% j 50
` of pairs of ~adjoint-!sEFs ofL where those with

integer indices are bosonic, whereas those with half-integer indices are fermionic. Next,
introduce the following infinite set of super-pseudo-differential operators:

Ms/25 (
k50

s21

F~s212k!/2D21Ck/2 , s51,2,..., ~4.1!

which generate an infinite set of flows]̄s/2( ]̄n21/2[D̄n ,]̄k[]/] t̄ k):

]̄s/2W5Ms/2W, D̄nL5$Mn21/2,L%,
]

] t̄ k

L5@Mk ,L#. ~4.2!
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On ~adjoint-!sEFs enteringMs/2 we allow anonhomogeneousaction of the superflows~4.2!
which parallels the construction of generalized ‘‘ghost’’ symmetry flows in the bosonic ca10

~nonhomogeneous terms are absent in the traditional approach to ‘‘ghost’’ symmetry flows17!:

]̄s/2F l /25Ms/2~F l /2!2Fs1 l /2 , ]̄s/2C l /252Ms/2* ~C l /2!1~21!slCs1 l /2 , ~4.3!

]̄s/2F
~* 56Ms/2

~* !~F ~* !, ~4.4!

whereF (* ) is a generic~adjoint-!sEF not belonging to the set$F j /2 ,C j /2%.
Using ~4.3! we arrive at the following:
Proposition 1: The infinite set of superflows]̄s/2 (4.1) (anti)commute both with the ordinar

superflows of MR-SKP (2.5)–(2.6) as well as among themselves:

F ]

] t̄ s

,
]

]t l
G5F ]

] t̄ s

,DnG50, F D̄s ,
]

]t l
G5$D̄s ,Dn%50, ~4.5!

F ]

] t̄ s

,
]

] t̄ k
G5F ]

] t̄ s

,D̄nG50, $D̄ i ,D̄ j%522
]

] t̄ i 1 j 21

~4.6!

meaning thatMs/2 obey the following equations:

]

]tk
Ms/25@L1

2k ,Ms/2#2 , DnMk5@L1
2n21,Mk#2 , DnMk21/25$L1

2n21,Mk21/2%2 ,

~4.7!

]

] t̄ k

Ml2
]

] t̄ l

Mk2@Mk ,Ml #50,
]

] t̄ k

Ml 21/22D̄ lMk2@Mk ,Ml 21/2#50, ~4.8!

D̄kMl 21/21D̄ lMk21/22$Mk21/2,Ml 21/2%522Mk1 l 21 . ~4.9!

In checking Eqs.~4.7!–~4.9! we make use of several useful identities for super-pseudo-differe
operators:

@Bb ,Fs/2D21Ck/2#25Bb~Fs/2!D21Ck/22Fs/2D21Bb* ~Ck/2!, ~4.10!

@Bf ,Fs/2D21Ck/2#2
~6 !5Bf~Fs/2!D21Ck/21~21!sFs/2D21Bf* ~Ck/2!, ~4.11!

~Fs/2D21Ck/2!~F j /2D21C l /2!5X~s,k!~F j /2!D21C l /21~21!k~ l 1 j 11!Fs/2D21X~ j ,l !* ~Ck/2!,

~4.12!

~F j /2D21C l /2!* 5~21! l j 1 j 1 lC l /2D21F j /2 , X~s,k!~F![Fs/2Du
21~Ck/2F!, ~4.13!

where Bb ,Bf indicate arbitrary bosonic/fermionic purely differential super-operators,
@•,•# (6) denotes commutator or anticommutator whenever the second element is bo
fermionic.

V. CONSTRAINED MR-SKP HIERARCHIES

The super-‘‘ghost’’-symmetry flows and the corresponding generating operatorsMs/2 ~4.1!
and ~4.2! can be used to construct reductions of the full~unconstrained! MR-SKP hierarchy.
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Namely, since according to Proposition 1 the super-‘‘ghost’’ flows obey the same algebra~4.6! as
the original MR-SKP flows, we can identify an infinite subset of the latter with a correspon
infinite subset of the former:

] l r /252 ]̄ l m/2 , l 51,2,..., ]k[
]

]tk

, ]k21/2[Dk , ]̄k[
]

] t̄ k

, ]̄k21/2[D̄k , ~5.1!

where~r,m! are some fixed positive integers of equal parity, and retain only these flows as
evolution flows~this is a supersymmetric extension of the usual reduction procedure in the p
bosonic case18!. Equation~5.1! implies the identification (Lr l )25Ml m/2 for any l and, there-
fore, the corresponding reduced MR-SKP hierarchy denoted as SKPr /2,m/2 is described by the
following constrained super-Lax operator:

L~r /2,m/2!5L1
r 1 (

j 50

m21

Fm212 j /2D21C j /2 . ~5.2!

The two simplest constrained MR-SKP Lax operators read

L~1/2,1/2![L5D1 f 01F0D21C0 , ~5.3!

L~1,1!5]1F0D21C1/21F1/2D21C0 , ~5.4!

whereF0 , C0 andF1/2, C1/2 are pairs of bosonic and fermionic~adjoint-!sEFs with respect to
the bosonic flows~about the fermionic flows, see below!.

In what follows we shall consider in some detail the simplest constrained SKP1/2,1/2 hierarchy
~5.3!, and henceforth we shall skip the subscript~1

2,
1
2! of ~5.3! for brevity.

Using identities~4.10!–~4.12! we find the identity for any integer powerN ~for an analogous
formula in the purely bosonic case, see Ref. 19!:

~LN!25 (
j 50

N21

LN2 j 21~F0!D21Lj* ~C0!. ~5.5!

In particular, for the square of~5.3! we get

L25]1L~F0!D21C01F0D21L* ~C0!, ~5.6!

where again the zero-order termDu f 012F0C050 as a particular case of~2.3!.
The constrained MR-SKP Lax operator~5.3! satisfies consistently the bosonic flow Eq.~2.5!.

However, we need to make a nontrivial modification of the original fermionic flows~2.6! in order
to keep them compatible with the reduction from the general to the constrained MR-SKP h
chy. Indeed, taking the~2! part of Eq.~2.6! for the constrainedL ~5.3! and using identity~4.11!
together with~5.5! we obtain

~DnF02L1
2n21~F0!!D21C02F0D21~DnC01~L2n21!1* ~C0!!

522~L2n!2522 (
j 50

2n21

L2n212 j~F0!D21Lj* ~C0!, ~5.7!

which leads to apparent contradiction.
In Ref. 8 we solved the problem of incompatibility of the standard Orlov–Schulman a

tional nonisospectral symmetry flows20 with the reductions of the full bosonic KP hierarchy b
appropriately modifying the original Orlov–Schulman flows. Motivated by this work8 we arrive at
the following important proposition:
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Proposition 2: There exists the following consistent modification of MR-SKP flows Dn ~2.6!
for constrainedSKP1/2,1/2 hierarchy:

DnL52$L2
2n212X~2n21!,L%5$L1

2n21,L%1$X~2n21!,L%22L2n, ~5.8!

X~2n21![2(
l 50

n22

L2~n2 l !23~F0!D21~L2l 11!* ~C0!, ~5.9!

DnF05L1
2n21~F0!22L2n21~F0!1X~2n21!~F0!, ~5.10!

DnC052~L2n21!1* ~C0!12~L2n21!* ~C0!2~X~2n21!!* ~C0!. ~5.11!

The modified Dn flows obey the same anticommutation algebra (2.8) as in the original un
strained case.

In checking the correct anticommutation algebra forDn ~5.8! one has to verify the identities

DkX
~2l 21!1DlX

~2k21!2$X~2k21!,X~2l 21!%2$X~2k21!,L2l 21%22$X~2l 21!,L2k21%250,

~5.12!

which in turn follow from the definition ofX(2n21) ~5.9! together with identities~4.10!–~4.13!.
Remark:It is straightforward to generalize Proposition 2 for arbitrary constrained SKPr /2,m/2

hierarchy~5.2!. Namely, the modified fermionic flows have the same form as in~5.8! where in the
expression forX(2n21) @cf. ~5.9!# one has to sum over all pairs of~adjoint-! sEFs entering the
purely pseudodifferential part ofL(r /2,m/2) in ~5.2!.

Let us now consider DB transformations onL[L(1/2,1/2) ~5.3! preserving its constrained form

L̃5TLT215D1 f̃ 01F̃0D21C̃0 , T5F0DF0
21 , ~5.13!

f̃ 052 f 022Du ln F0 , F̃05TL~F0!5F0]x ln F01F0Du f 01F0
2C0 , C̃05F0

21 .
~5.14!

We have the following useful identities for DB-transformed quantities:

L̃s~F̃0!5TLs11~F0!,

~L̃s11!* ~C̃0!5~21!s11T * 21Ls* ~C0!5~21!sF0
21Du

21~F0Ls* ~C0!!. ~5.15!

There is a further crucial property of the modifiedDn flows ~5.8!–~5.9!:
Proposition 3: The conditions for preserving the fermionic flow Eqs. (5.8)–(5.9) by the

Darboux–Bäcklund transformations onL[L1/2,1/2 (5.3) [cf. second Eq. (3.2)]:

DnTT212~TL1
2n21T21!2522~L̃2n21!21X̃~2n21!1TX~2n21!T21, ~5.16!

whereT5F0DF0
21 and the ‘‘tilde’’ refers to DB-transformed objects, are now satisfied. The

proof of ~5.16! proceeds by using the modifiedDn flow definitions ~5.9!–~5.11! together with
identities~4.10!–~4.13! and ~5.15!.

VI. THE DARBOUX–BÄ CKLUND ORBIT OF THE CONSTRAINED MR-SKP HIERARCHY

The recursive expression for the chain of the DB-transformations~5.13!–~5.14! of the con-
strained SKP1/2,1/2 hierarchy, starting from the ‘‘free’’ initialL05D, reads~the subscriptk indi-
cating the step of DB iteration!

Lk115TkLkT k
215D1 f k111Fk11D21Ck11 , Tk5FkDFk

21, ~6.1!
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L15T0DT 0
215D22Du ln F01F0~]x ln F0!D21F0

21, ~6.2!

where

f k11522Du ln Fk2 f k , Ck115Fk
21, ~6.3!

Fk115Fk]x ln Fk1FkDu f k1Fk
2Ck ~6.4!

and whereF0 is a sEF of the initial ‘‘free’’L05D satisfying the ‘‘free’’ version of Eq.~5.10! ~no
X(2n21) term!. Therefore, its explicit expression is given by Eq.~2.20! with substitutingun→
2un . Further we have

F15]xF0 , C15F0
21, f 1522Du ln F0 . ~6.5!

Note, that from~6.3! to ~6.4! we find

2Fk11Ck111Du f k1152FkCk1Du f k5¯50, ~6.6!

which is consistent with the absence of a zero-order term in the square ofLk in ~6.1!.
Equation~6.3! can easily be rewritten as follows:

f k11522Du(
i 50

k

~21!k2 i ln F i . ~6.7!

Recalling identity~6.6! we can alternatively rewrite Eq.~6.4! as

Fk1152 1
2FkDu f k115Fk]x ln Fk2Fk

2Ck ~6.8!

from which we obtain

Fk115Fk(
i 50

k

~21!k2 i]x ln F i . ~6.9!

After making the standard substitutionFk5ewk, we find from the second equation in~6.8! a new
super-Toda~s-Toda! lattice equation:

]xwk5ewk112wk1ewk2wk21. ~6.10!

Note, that by acting on~6.10! with ]x we get

]x
2wk5ewk122wk2ewk2wk22, ~6.11!

which has the form of the ordinary one-dimensional Toda lattice equation but with adoubled
lattice spacing and, of course, the Toda variableswk5wk(x,t2 ,...;u,u1 ,...) are nowsuperfields.
Equation~6.10! can also be rewritten as

ewk112wk5(
i 50

k

~21!k2 i]xw i ~6.12!

or

wk115wk1 lnS (
i 50

k

~21!k2 i]xw i D . ~6.13!
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We now discuss the Wronskian representation for the sEFsFk . Thes-Toda lattice~6.10! can
apparently be thought of as the square root of the standard Toda lattice. We can use this
proceed without any technical calculations. According to the construction given in Ref. 21 th
F2n associated with even lattice points can be given the usual Wronskian expressions w
starting ‘‘point’’ F0 . For the same reason, EFsF2n11 associated with odd lattice points of th
s-Toda lattice will have the usual Wronskian expressions with the starting ‘‘point’’F15]xF0

[F0
(1) ~6.5!.
Generally, forn50,1,... we find by the above arguments

F2n5
Wn11@F0 ,F0

~1! ,...,F0
~n!#

Wn@F0 ,F0
~1! ,...,F0

~n21!#
, F2n115

Wn11@F0
~1! ,F0

~2! ,...,F0
~n11!#

Wn@F0
~1! ,F0

~2! ,...,F0
~n!#

, ~6.14!

whereWk@ f 1 ,...,f k#[deti]x
i21f ji, i , j 51,...,k, denotes standard Wronskian determinant@however,

with superfield entries in~6.14!# and whereF0
(k)[]x

kF0 with F0 as in ~2.20! ~with un→2un!.
Using ~3.4! and the above Wronskians expressions~6.14! we find by iteration the super-ta

functions obtained by 2n recursive steps of the DB transformations:

t~2n!5
F2n21F2n23¯F1

F2n22F2n24¯F0
5

Wn@F0
~1! ,...,F0

~n!#

Wn@F0 ,F0
~1! ,...,F0

~n21!#
, ~6.15!

t~2n11!5
F2nF2n22¯F0

F2n21F2n23¯F1
5

Wn11@F0 ,F0
~1! ,...,F0

~n!#

Wn@F0
~1! ,...,F0

~n!#
. ~6.16!

Moreover, since for~5.3! ]x ln t5F0C0, for the k-step DB iteration we have]x ln t(k)5Fk /Fk21

by taking into account~3.4!. The latter equation together with the relationt (k11)5Fk /t (k) true for
any DB-stepk @cf. ~3.4!# yields an alternative super-tau-function form ofs-Toda lattice:

]x ln t~k!~ t,u!5
t~k11!~ t,u!

t~k21!~ t,u!
~6.17!

with the short-hand notation~2.9!.
In a subsequent paper we plan to discuss several interesting issues connected with ex

the present results:~a! construction of a ‘‘doubled’’ MR-SKP hierarchy by providing a super-L
formulation for the super-‘‘ghost’’ symmetry flows@cf. ~4.5!–~4.6!#–a supersymmetric extensio
of the double-KP construction of Ref. 10;~b! general treatment of arbitrary constrained SKPr /2,m/2

hierarchies, including derivation of more general Wronskian-type solutions for the super-tau
tion and elucidating their Berezinian origin;~c! obtaining consistent formulation of supersymme
ric two-dimensional Toda lattice as Darboux–Ba¨cklund orbit on the ‘‘doubled’’ MR-SKP hierar-
chy ~similar to the purely bosonic case10! and of supersymmetric analogs of random~multi!matrix
models; ~d! study of possible connections of super-tau functions, on one hand, and pa
functions and joint distribution functions in random matrix models in condensed matter ph
~cf. Ref. 22!, on the other hand.
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